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Abstract
Speaker adaptation has been widely studied to solve the mis-
match between training and test conditions for end-to-end auto-
matic speech recognition (ASR). A key challenge of speaker
adaptation is lack of sufficient annotated target-speaker data.
Considering the training set is always a large-scale one and con-
tains various speakers, it is likely that utterances in the training
set can have similar voice characters with the target speaker, and
naturally those similar utterances can be treated as a supplement
for target speaker data in the adaptation process. Therefore, we
propose personality-aware training (PAT) framework to adapt a
pre-trained ASR to the target speaker. In PAT, the small-scale
target speaker data is viewed as anchors, and the losses of train-
ing samples are re-weighted according to the voice character
similarity between the anchors and training samples, where the
voice character similarity is derived from the speaker or prosody
embedding extractor. Experiments on KeSpeech and Magic-
Data corpora show that, compared with the unadapted system,
the proposed method achieves 6.35% and 11.86% relative re-
duction on character error rate with only 10-minute pseudo-
label and true-label adaptation data, respectively1.
Index Terms: Personality-aware, speaker adaptation, speech
recognition, personalization

1. Introduction
Recently, end-to-end automatic speech recognition (E2E ASR)
systems achieve promising performance with thousands of
training data recorded by many speakers [1–3]. However, the
performance of E2E systems degrade rapidly, when there is a
huge mismatch on voice characters between the training and
test conditions. Speaker adaptation algorithms attempt to alle-
viate the above mismatch by adapting the ASR model to the
target speaker, which is also called personalization.

Recent studies on speaker adaptation for ASR systems can
be devided into three categories. The first one is embedding-
based speaker-aware training (SAT), in which auxiliary speaker
embeddings, such as i-vector [4] and x-vector [5], are fed into
an ASR model along with speech features. In this way, the
model is facilitated to normalize the speaker variation [6, 7].
Subsequently, the attention mechanism is introduced to SAT.
Typically, a speaker-aware attention module is incorporated
to the transformer based ASR model [8], the attention-over-
attention mechanism is introduced to aggregate frame-level
speaker embeddings and generate an utterance-level embed-
ding [9], and the M-vector is generated by involving a memory
block and weighting relevant i-vectors through attention [10].
The second category is based on data-augmentation, in which
the personalized speech synthesis model is used to generate

1Code will be at github:shibeiing/Personality-aware-Training-PAT

additional data for specific speaker adaptation [11, 12]. The
third one is a model-based approach, which can be divided into
two types according to whether additional parameters are im-
ported into the adapted model or not. Finetuning is the most
straightforward model-based approach. Representatively, the
speaker signature (SS) is registered into the parameters by fine-
tuning with adaptation data and a hierarchical decomposition
study is performed to evaluate the effect of finetuning on each
module [12]. Another model-based approach is involving extra
speaker-dependent parameters to represent speaker variability,
such as learning hidden unit contributions [13–16] and scaling
and shifting factors [17]. To alleviate the overfitting problem
caused by the limited adaptation data, the L2 norm [18], Kull-
back–Leibler divergence [19–21] and adversarial training [22]
are introduced to regularize the adapted model.

Current adaptation approaches always need sufficient adap-
tation data to guarantee the performance on the target speaker.
However, it is challenging to collect sufficient annotated data
from the target speaker due to the cost and privacy protection.
Considering the training set of E2E ASR is always large-scale,
there may be utterances having the similar voice characters as
the target speaker. Thus, it is reasonable to utilize the simi-
lar utterances to be a supplement for target speaker data in the
adaptation process, which has not been well-studied. Therefore,
we propose a novel model-based approach, personality-aware
training (PAT) framework, in which the small amount of tar-
get speaker data is treated as anchors, and the losses of training
samples are re-weighted according to the similarities to the an-
chors, where training samples come from original training set
and the target speaker data. In order to estimate the voice char-
acter similarity, the speaker or prosody extractor is trained to
extract utterance-level representations. The contrast between
training samples and anchors plays a role of filtering the ut-
terances, so the model can be adapted with filtered utterances
whose personality is similar to the target speaker.

We evaluate the effectiveness of the PAT framework on the
open-source KeSpeech and MagicData corpora. Experiments
show that PAT can achieve 6.35% and 11.86% relative reduction
on character error rate (CER) with only 10-minute pseudo-label
and true-label adaptation data. With extremely scarce 5-minute
and 3-minute true-label adaptation data, PAT can still provide
8.24% and 5.77% relative improvements. In addition, by using
training and adaptation data at the same time, PAT not only im-
proves the performance on specific speaker, but also alleviates
the overfitting problem.

2. Personality-aware Training Framework
In this section, we describe the proposed personality-aware
training framework and its practical implementation with
speaker and prosody embedding extractors. As shown in Fig-
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Figure 1: The overview of our PAT framework.

ure 1, PAT framework comprises a shared embedding extrac-
tor to obtain utterance-level representations, and the represen-
tations are then consumed by a similarity measurement module
to calculate the Cartesian product of similarity on training sam-
ples and anchors. After the weight transformation, similarities
are converted to the importance weights of training samples.
Finally, by re-weighting ASR losses and back-propagation, the
end-to-end ASR model is adapted to the target speaker.

2.1. PAT framework
In each mini-batch, there are N training samples X : {X1, X2,
. . . , XN} and M anchors A: {A1, A2, . . . , AM}, where X are
randomly selected from the union set of original training set and
the target speaker data. The training samples X and anchors A
are fed into a shared embedding extractor to obtain utterance-
level representations vtrn and vanm , respectively:

vtrn = EmbExtractor(Xn) (1)
vanm = EmbExtractor(Am) (2)

where “EmbExtractor” can be implemented by any utterance-
level embedding models. In this paper, we employ the speaker
and prosody embedding extractors, and more details are pro-
vided in section 2.2 and 2.3, respectively.

Given the representations of training and anchor samples,
we calculate the Cartesian product of their cosine similarities to
obtain the similarity matrix S = {sn,m}:

sn,m =
< vtrn , vanm >

||vtrn || · ||vanm || (3)

where < ·, · > represents the dot product of two vectors, and
|| · || means the L2 norm of a vector. To evaluate the importance
weight wn of a training sample Xn, we aggregate the similari-
ties between Xn and all anchors A in a mini-batch:

wn =
1

M

M∑
m=1

sn,m (4)

Since cosine similarities belong to [−1, 1], simply using the raw
weight wn to re-weight the training losses may slow down the
optimization process. Therefore, we clip and re-scale the raw
weights to match the batch size N :

w̄n =
N · max(wn, 0)∑N
i=1 max(wi, 0) + ϵ

(5)

where ϵ is a small number for numeric stability. Finally, we use
the re-scaled value w̄n to represent the importance of training
sample Xn and re-weight the ASR losses:
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Figure 2: The illustration of (a) training and (b) inference
stages for prosody embedding extractor.

L =
1

N

N∑
n=1

w̄n · L(yn,ASRθ(Xn)) (6)

where yn is the text label of training sample Xn, and L means
the original loss function of ASR model. ASRθ represents a
pre-trained ASR model with the parameter of θ. Through back-
propagation, the gradients of samples with similar voice char-
acters are enhanced and the pre-trained model can be adapted to
the target speaker:

θ = θ − η

N

N∑
n=1

w̄n
∂L(yn,ASRθ(Xn))

∂θ
(7)

where η means the learning rate. Theoretically, PAT can be
applied to all popular end-to-end ASR models, such as CTC,
attention and transducer based models.

2.2. Speaker Embedding Extractor
The speaker embedding extractor is based on the commonly-
used ResNet101 network architecture [23], which comprises
four residual blocks with the layer number of 3, 4, 23, 3 and the
channel number of 32, 64, 128, 256. As in x-vector [5], a statis-
tics pooling layer is employed to aggregate the speaker informa-
tion over the whole utterance (i.e. mean and standard deviation
are calculated across the frames). After the pooling layer, we
flatten the utterance-level representation and feed it to a linear
transformation. As as result, a 256-dimensional speaker em-
bedding is obtained. More details and pre-trained models can
be found in [24].

2.3. Prosody Embedding Extractor
The prosody extractor is based on vector quantized variational
autoencoder (VQ-VAE) [25] which combines VAE with vector
quantization. VQ-VAE learns discrete tokens from the continu-
ous latent space by using the latent representations to look up a
1-of-K embedding vector, which is used to reconstruct the tar-
gets. As shown in Figure 2(a), the prosody extractor mainly
comprises three parts at the training stage: an encoder to map
log-mel filterbank (Fbank) X = (x1, . . . , xT )

2 into latent rep-
resentations Henc = (henc

1 , . . . , henc
T ), a vector quantization

module to discretize latent representations and form an em-
bedding codebook E = (e1, . . . , eK), and a decoder to re-
construct the spectrogram X ′ = (x′

1, . . . , x
′
T ) with the dis-

cretized latent representations Hproso = (hproso
1 , . . . , hproso

T ),
the linguistic embeddings Hling = (hling

1 , . . . , hling
T ) and the

2For notational simplicity, we omit the subscript n of samples.



speaker embedding Hspk. While Hspk is extracted with the
speaker embedding extractor in section 2.2, Hling is the pho-
netic posteriorgram predicted by a phoneme recognition model
[26, 27]. Similar to [28], Hspk and Hling represent the tim-
bre and content in speech, respectively, so that Hproso contains
much more speaker-and-content-independent prosody informa-
tion. The discretized latent representation is calculated by the
nearest neighbour look-up with the shared codebook E:

hproso
t = ek,where k = argminj ||h

enc
t − ej ||2 (8)

The codebook is updated in a manner of exponential moving
average (EMA), in which the weighting factors for older latent
representations decrease exponentially:

e
(u)
j = α · henc

t + (1− α) · e(u−1)
j (9)

where α ∈ [0, 1] is the smoothing factor, and u is the index of
update steps. To get a phone-aligned prosody embedding, we
calculate the autocorrelation matrices (Corr) of Hling and Henc

and minimize the mean square error (MSE) of Corr(Hling)
and Corr(Henc). At the same time, the output of prosody en-
coder is forced to be closed to the nearest neighbour ek. The
final loss function of prosody extractor is:

Lproso = MSE(X̂ ′, X) + βMSE(Hproso, Henc)

+ γMSE(Corr(Hling), Corr(Henc))
(10)

where β and γ are the hyperparameters. X̂ ′ denotes the predic-
tion of X ′. Note that the input X only contains low frequency
bands (1-24), and the expected output X ′ only contains middle
frequency bands (25-48). In this way, the prosody embedding
hproso learns the common formant trend across different fre-
quency bins. Since a proper initialization of embedding code-
book benefits the prosody extractor, we train the VAE without
vector quantization in the first 50 epochs, and apply k-means
clustering on the Henc of all training samples to obtain K clus-
ter centroids. After initialization, we add the vector quantization
module as the prosody bottleneck in the last 50 epochs.

The concatenation of prosody encoder and vector quantiza-
tion module is viewed as the prosody embedding extractor. We
first use the prosody embedding extractor to transform the utter-
ance into a sequence of discrete embeddings, then the frequency
vector of every embedding in the codebook is used to represent
the utterance. Figure 2(b) shows the extraction process of fre-
quency vector, in which the frequency vector is folded to form
a two-dimensional heatmap.

3. Experiment Settings
3.1. Datasets
Experiments are mainly conducted on the KeSpeech corpus, an
open source dataset of Mandarin and its eight subdialects in-
cluding Zhongyuan, Southwestern, Ji-Lu, Jiang-Huai, Lan-Yin,
Jiao-Liao, Northeastern and Beijing [29]. KeSpeech is split into
two phases according to the recording time, and the phase-1
is used to pre-train the ASR model in this paper, which con-
tains 895 hours data recorded by 27,044 speakers in 34 cities
of China. The train and development sets contain 860 hours
(24,945 speakers) and 3.4 hours (100 speakers) respectively.
The test set is used to evaluate the source-domain performance,
which contains 31 hours (1,999 speakers).

We evaluate our method in a mismatch condition where
training and test data are different on voice characters, accent
distributions, recording devices, etc. Two open-source datasets

Table 1: The CERs(%) and parameters numbers of two Con-
former Transducer with different model sizes.

Model Target domain Parameters (M)

Conformer-T(L) 15.81 112.8
Conformer-T(S) 19.06 9.4

from the MagicData organization are employed as the target-
domain test sets, i.e., the Sichuan3 and Zhengzhou4 corpora.
The Sichuan corpus is a part of Southwestern Mandarin, and
the Zhengzhou corpus belongs to Zhongyuan Mandarin. The
target-domain test set consists of 20 speakers with the duration
of about 30 minutes for each speaker. We use 10 minutes for
adapting (also used as anchors) and 20 minutes for test.

3.2. Training details
We evaluate the effectiveness of our PAT framework on con-
former transducer (Conformer-T) based ASR model, which
achieves the state-of-the-art performance on several bench-
marks. The 80-dimensional Fbank is used as the feature with
the window size of 25ms and the shift size of 10ms. Since per-
sonalized ASR models are probably adapted on the cloud and
pushed back to devices for inference [30], the computational
complexity and model size at the inference stage should be care-
fully considered. Thus, we train two ASR models with different
sizes, i.e., Conformer-T(S) and Conformer-T(L), where the net-
work configurations are the same as [1]. Table 1 shows their
performance and parameter numbers. Although the large model
achieves better performance than the small one, it is imprac-
tical to deploy it on smart devices. The personalized ASR is
expected to have a small footprint and the closing performance
to the larger one. We employ the Conformer-T(S) as baseline in
the following experiments and fill the performance gap. We use
the ESPnet toolkit [31] to implement and evaluate baselines and
adaptation methods. Following the default settings in ESPnet,
we train the model 100 epochs with the batch size of 80.

For the speaker embedding extractor, a pre-trained model
[24] is employed to extract embeddings for similarity measure-
ment and the calculation of Hspk (seen in Section 2.2). The
prosody embedding extractor comprises one convolutional sub-
sampling layer with a factor of four on the time axis, which
is followed by four transformer layers and a bottleneck linear
layer. In the first three transformer layers, a multi-head atten-
tion with four heads and a feedforward layer with 256 output
units are stacked. The last transformer layer has a single-head
attention to calculate the autocorrelation matrix Corr(Henc),
then the dimension of its output is reduced to 16 by a linear
layer. In vector quantization, the codebook size is set to 1,024
and the vector dimension is 16. The hyperparameter α, β and γ
are set to 0.001, 0.25 and 1.0, respectively. We train the prosody
embedding extractor on four GPU with the batch size of 48 on
each GPU. We employ the Noam optimizer [32] to train the ex-
tractor with the learning rate of 1.5 and 25000 warmup steps.

4. Experimental Results
4.1. Comparison of PAT and other adaptation methods
Table 2 compares the proposed PAT framework with other adap-
tation methods in terms of CER on source and target domains.
In the accent adaptation, the location of target speaker is avail-
able and the utterances(75h∼84h) collected from the same area

3https://magichub.com/datasets/sichuan-dialect-scripted-speech-
corpus-daily-use-sentence/

4https://magichub.com/datasets/zhengzhou-dialect-scripted-speech-
corpus-daily-use-sentence/



Table 2: Evaluation of different speaker adaptation methods
on source and target domain test sets. The “Supervised” and
“Unsupervised” mean whether the 10-minute adaptation data
is annotated by human or not. CER.R means the relative CER
reduction on baseline.

Method Source domain Target domain

CER CER.R CER CER.R

Baseline 12.69 NA 19.06 NA

Unsupervised

Accent adaptation 13.14 -3.54 18.71 1.84
SAT [7] 12.79 -0.79 18.35 3.57
Speaker sign. (SS) [12] 13.11 -3.31 18.21 4.46
PAT (speaker) 12.82 -1.02 17.90 6.09
PAT (prosody) 12.65 0.32 17.85 6.35

Supervised

SAT+SS 14.79 -16.55 18.09 5.09
Speaker sign. (SS) [12] 13.14 -3.54 17.82 6.51
PAT (speaker) 12.82 -1.02 16.80 11.86
PAT (prosody) 12.63 0.47 16.87 11.49

are selected to fine-tune the pre-trained ASR. In speaker sig-
nature, the pre-trained ASR model is directly fine-tuned with
the scarce target speaker adaptation data, which is a commonly-
used effective method. In speaker-aware training (SAT), the
speaker embedding of the same utterance is employed as the
auxiliary input for ASR model. SAT can be applied to var-
ious ASR models, and it is usually considered as a compar-
ative method in recent studies. In SAT+SS, a well-trained
SAT model is further fine-tuned with the annotated adaptation
data. “Unsupervised” means the adaptation data is not anno-
tated by human, instead, audios are fed into the baseline to ob-
tain the 1-best results of beam search, which is viewed as the
pseudo-label. In both unsupervised and supervised conditions,
all adaptation methods can improve the performance on the tar-
get speaker. Compared with the baseline, our PAT framework
can achieve the relative CER reductions of 6.09% and 6.35%
without any annotated adaptation data. When the ground-truth
label is involved, PAT achieves the highest relative improve-
ments of 11.86% and 11.49%. While the performance of other
methods degrades on the source domain to some extent, our
PAT maintains or even slightly improves the performance on
the source domain. This indicates that the generalization abil-
ity of PAT is better than other adaptation methods. It should be
noted that, at the inference stage, PAT does not involve any extra
parameters but fills 69% performance gap between Conformer-
T(S) and Conformer-T(L) which is ten times larger than the for-
mer.

4.2. Ablation study and analysis
We perform ablation study to evaluate the impact of each mod-
ule in PAT. Table 3 shows the performance of different combina-
tions of adaptation data and PAT modules. In EXP1 and EXP6,
we add 10-minute pseudo-label and true-label adaptation data
into the training set. From the table, we can see that the per-
formance improvement is fairly limited, which is because the
adaptation data is very scarce (10 minutes) compared with the
training set (860 hours). In EXP2 and EXP3, the adaptation data
is excluded, and the recognition performance can be improved.
This indicates that our PAT framework can select similar utter-
ances and adapt model to the target speaker. When the adapta-
tion data is involved, PAT provides a significant improvement
no matter the data is annotated or not, which indicates that PAT
can make fully use of adaptation data. Comparing the prosody

Table 3: The ablation studies on adaptation data and PAT.

Experiment Source Adapt. PAT PAT CER CER.Rdomain data (spk) (proso)

Baseline ✓ 19.06 NA

Unsupervised

EXP1 ✓ ✓ 18.82 1.26
EXP2 ✓ ✓ 18.99 0.37
EXP3 ✓ ✓ 18.85 1.10
EXP4 ✓ ✓ ✓ 17.90 6.09
EXP5 ✓ ✓ ✓ 17.85 6.35

Supervised

EXP6 ✓ ✓ 18.60 2.41
EXP7 ✓ ✓ ✓ 16.80 11.86
EXP8 ✓ ✓ ✓ 16.87 11.49
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Figure 3: Comparison of different methods on the duration of
adaptation data.

and speaker embedding extractors, PAT(prosody) achieves a
better performance than PAT(speaker) when the pseudo-label is
used for adaptation. In contrast, when the true-label is available,
PAT(speaker) performs slightly better.

4.3. Robustness to the duration of adaptation data
Figure 3 shows the CERs of adapted ASR models using vari-
ous duration of true-labeled adaptation data. As expected, the
more adaptation data is used, the more improvement can be
achieved. Compared with the speaker signature, our PAT can
achieve a similar performance with only 3-minute adaptation
data, while SS needs 10 minutes. This indicates that PAT uti-
lizes the data more efficiently and alleviates the cost of colloct-
ing the adaptation data. We find that PAT(prosody) outperforms
PAT(speaker), when the adaptation data is extremely scarce (≤
5 minutes). This indicates prosody based similarity measure-
ment is more robust to the duration of adaptation data.

5. Conclusion
In this paper, we propose a personality-aware training frame-
work and it is implemented with two embedding extractors.
Experiments on the open-source KeSpeech and MagicData
datasets show that the proposed PAT framework can make
fully use of the limited adaptation data. Compared with the
unadapted Conformer transducer model, our PAT framework
achieves up to 6.35% and 11.86% relative CER reduction with
10-minute pseudo-label and true-label adaptation data, respec-
tively. Moreover, the PAT framework not only improves the
performance on target speaker but also alleviates the overfitting
problem caused by finetuning with limited data.
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